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A general theory of the low Reynolds number hydrodynamics of membranes immersed in Newtonian
fluids is derived. The basic result is a linear relation between membrane stress and membrane velocity,
involving two singular integral operators 4 and B on the membrane. Methods for computing 4 and B
are given in the case where the membrane is azimuthally symmetric. Explicit formulas for incorporating
a wall boundary condition are given. The small amplitude shape dynamics of a vesicle near a wall is de-
scribed. The method is computationally efficient because it pulls the description of the three-
dimensional fluid flows back to the two-dimensional membrane boundary using the classical integral rep-
resentation of Stokes flows in terms of their boundary values.

PACS number(s): 68.10. —m, 87.45.—k, 02.70.Pt, 47.15.Gf

I. INTRODUCTION

The low Reynolds number flow of an incompressible
Newtonian fluid is described by the Stokes equations [1]

vVo5=0, (1)
—VP+nV%=0, )

where U is the velocity vector field, P is the pressure, and
7 is the viscosity of the fluid. The physical content of the
Stokes equations is that the inertial term in Newton’s
second law is negligible compared to the viscous and
pressure forces on each element of fluid, which therefore
balance each other everywhere in the interior of the fluid
region. We will call solutions of these equations Stokes
flows. The most familiar and useful Stokes flow is the
flow in the exterior of a rigid sphere, leading to the well
known expression for the net force F on a sphere of ra-
dius R moving with constant velocity V through an oth-
erwise stationary fluid [2]

F=—6mnRV . 3)

This result is verified experimentally to good accuracy
when the Reynolds number pVR /7<1 (see Ref. [2]).
For such low Reynolds number flows the Stokes equa-
tions are an appropriate description. The example of the
moving sphere illustrates that time dependence may enter
the Stokes equations through the boundary conditions,
even though time does not appear explicitly in the equa-
tions themselves.

This paper is concerned with computing Stokes flows
in regions with membrane boundaries, such as those that
arise, for example, in biological problems. Blood, to
name one example, poses such problems, being a suspen-
sion of deformable fluid vesicles (from the purely
mechanical point of view). One approach to modeling
Stokes flows would be to integrate the (three dimensional)
Stokes equations, which are, after all, an especially simple
case of the Navier-Stokes equation, for which an enor-
mous computational literature exists. This paper sug-
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gests an alternative approach, in which all integration is
pulled back to the (two-dimensional) membrane boun-
daries. This reduces the problem from three to two di-
mensions, a very significant simplification. If the mem-
branes have azimuthal symmetry, the problem is
simplified still more, becoming essentially one dimension-
al. This method also isolates the role of the mechanical
properties of the membrane, making it, as it should be, a
problem separate from the three-dimensional flow to
which the moving membrane gives rise.

The method relies entirely on Green’s identity, as ap-
plied by Oseen to this problem [3]. Oseen pointed out
that the Stokes flow v’ in a bounded region D has an in-
tegral representation in terms of the boundary values of U
and its normal derivative. (It is analogous to the repre-
sentation of the eletrostatic potential by a combination of
single layer and double layer potentials.) That Stokes
flows can be represented by boundary values tells us that
we do not have to regard them as essentially three dimen-
sional.

Let M be a membrane surface, separating two regions
D, and D,, and consider the Stokes flows on each side.
One may approach the surface M from either side, and it
is clear that the velocity is continuous on M, but that its
normal derivative is typically discontinuous. The discon-
tinuity is related to internal stresses in the membrane.
This observation, in conjunction with the above men-
tioned integral representation, leads to a linear relation
between the internal membrane stresses and the mem-
brane velocity, the main result of the paper, Eq. (19). The
rest of the paper is detailed methods for computation.
Azimuthal symmetry is treated in Sec. III. Wall bound-
ary conditions are treated in Sec. IV. The small ampli-
tude shape dynamics of vesicles is treated in Sec. V.

Of course, the idea of deriving singular integral equa-
tions from Green’s function representations is absolutely
classical in mathematical physics. It is not widely appre-
ciated, though, that this leads to computationally practi-
cal schemes. One must deal with singular operators, it is
true, but one lowers the dimensionality of the problem
from three dimensions to two.
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II. MEMBRANE STRESS AND VELOCITY

Oseen’s integral representation for a Stokes flow in an
open bounded region D in terms of boundary data on the
smooth boundary M is given by [3]

v (7)) = 87rnf f Lik n———Pn
vj \M g TPkN, A4 . 4)

Here 7 is a fixed (interior) point of D, and j and k are in-
dices running from 1 to 3, labeling Cartesian components
of several vectors and tensors. The vector with com-
ponents #; is the unit outer normal # on M, as in Fig. 1.
The derivative d /dn is best understood as minus the par-
tial derivative in the direction —;3\’, since it is not clear
from this representation that the flow exists outside of D.
The tensor 7, and the vector p; should be thought of as
known quantities, depending on the variable of integra-
tion 7 and the parameter 7. They are three Stokes flows
(labeled by k) with a Green’s function singularity at
7=T7,, and may be taken to be [3]

5; (x; X0 X —%xq1)
(7P = — e IOk S0 (s)
| ) |"*r0|
(xp —xo)
Pi(F,Fo)=2n———— . (6)
r—r()'
Here x; is a Cartesian component of 7, etc. One may

equally well add to these singular Stokes flows, for each
k, regular Stokes flows in D, i.e., the representation Eq.
(4) is far from being unique. In Sec. IV this freedom is
used to build in no-slip boundary conditions on a plane
wall.

The continuity properties of the integrals in Eq. (4) are

as follows. Let M be a smooth (orientable) surface with
unit normal n and P a point of M. Let 7¥y=Pzen,,
where € >0. Then
lim [ fitydd=A4[f (7)
and
M
il
FIG. 1. Stokes flow in D can be represented at an interior

point 7, by an integral over the boundary M.

dt
hm v d—n—njpk

Oan

dA=t4rn, +1B[v], . (8

Here A and B are linear functionals taking vector func-
tions on ‘M to vector functions on M. A and B are
defined here as singular integral operators. They depend
on the surface M. The functional B also depends on the

orientation of M (through 7). The determination of A
and B turns out to be the main computational task in us-
ing this method. Initially, however, the important thing
to notice is the discontinuity in the second integral, indi-
cated by the = sign: the limit as 7,— P depends on which
side of M one approaches from.

It is worth digressing to see how this works in the only
really familiar Stokes flow, that around a rigid sphere
translating with constant velocity V. Specifically, let M
be a rigid spherical shell of radius R with fluid outside
and inside, having viscosities 77, and 7;. In this case the
integrands are known and the integrals elementary. (It is
permissible to use the integral representation even in the
unbounded exterior of the sphere because the integrands
fall off as » 3, so that one could add a large spherical
boundary giving arbitrarily small contribution.) For this
flow there is a physical meaning to the combination

dv;
‘l’]E—p i fj . 9)

In fact, f; is the stress due to the fluid on the sphere (ei-

ther outside or inside, depending on the direction of ﬁ’,
which points out of the region). It happens to be a con-
stant vector field [2] in either case, i.e.,

F.

J
= , (10)
7 47R?

where F j is the net force due to the fluid (either outside or

inside) on the sphere. The velocity of the fluid on M is
also a constant vector field V; because the rigid M is
moving with this velocity. Then, using Eq. (4) and taking

the limit as 7, approaches M from the outside, one has
1 67TR

8mmoVi=— fRYFamn Vi —4mVy (11)

taking the limit as ?0 approaches M from the inside one

has

16mR
3

In going from the exterior case to the interior case the

87, V= — N4, Vi 4, Vi, . (12)

A
orientation of # reverses because the integral representa-

tion requires that # point out of the domain where the
representation is valid. In the first term on the right-
hand side this sign is swallowed up in the definition of f,,
but in the last two terms it appears as an explicit reversal
of sign. In particular, the first term on the right-hand
side is the result of the functional A4 and the last term is
the result of the functional B. One notices that the con-
stant vector field on the sphere is an eigenfunction of A4
with eigenvalue 167R /3 and of B with eigenvalue —4.
These two statements, which refer to a computation over
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the two-dimensional surface of the sphere only, turn out
to imply the usual conclusions about the three-
dimensional Stokes flow.

It is clear from Eq. (11) that

FU'=4mR>f" = —6mnoR V), (13)
and from Eq. (12) that
F*=47R*f{"=0 . (14)

This is, of course, the usual conclusion, Eq. (3). In get-
ting to it, though, one has used the already known solu-
tion in Eq. (10) to assert that the stress f; is a constant
vector field on M. This is not at all obvious initially and
in the usual derivation is something one learns only after
the problem is essentially solved. In general, one would
not know what f; corresponds to the boundary values V;
of the velocity. The situation is suddenly different, how-
ever, if one simply adds Eqgs. (11) and (12). One finds

8V =A[—f"—f"], (15)

with no assumptions about the stresses. Now, by the usu-
al assumptions of low Reynolds number hydrodynamics,
the net force on every fluid element vanishes, including
elements of the membrane, i.e.,

fcut+7in+fM:6 , (16)

where 7M is the stress on an element of the membrane
due to the rest of the membrane. This quantity, unlike
the other stresses, has nothing intrinsically to do with
Stokes flows and depends only on the viscoelastic proper-
ties of the membrane under deformation. (A rigid mem-
brane is, unfortunately for the exposition, a degenerate
case.) The example of the sphere then takes the form

8mnoV =A[fr] . (1mn

The problem reduces to inverting the linear functional 4.
A study of A, especially its spectral properties, would re-
veal that the inverse image of a constant vector field un-
der A is a constant vector field

6moRV , (18)

implying, since clearly f™=0 in rigid translation, the
usual result, Eq. (13). The above argument is an unortho-
dox derivation of the Stokes result Eq. (3) involving only
computations on the sphere itself.

The example of the sphere has served its purpose. The
general statement is only a slight generalization from
this example: its derivation is exactly the same

am(no+n,)V=A[fa 1+ (me—n,)B[V], (19)

where M is any membrane iurface, S is the internal
stress in the membrane, and ¥ is its velocity. This singu-
lar integral equation on M relates the velocity of the
membrane to its internal stress. It is the main result of
this paper. Of course, by linearity, solutions to this equa-
tion can be superimposed on other Stokes flows that are
regular across M.

The next section gives a practical method for comput-
ing the singular integral operators 4 and B for azimu-
thally symmetric membranes. These operators determine
the first-order hydrodynamics theory of arbitrary (even
nonsymmetric) perturbations of azimuthally symmetric
membranes.

III. AZIMUTHALLY SYMMETRIC MEMBRANES

Let M be generated by rotating a curve
C={(x(s),0,2(s))|0<s <1} (20)

in the x-z plane about the z axis, where the parameter s is
the arclength on C. It is useful also to define the angle
6(s) to be the angle between the tangent to C and the z
axis, so that

dz /ds=cos 6 , 21
dx /ds =sin 0 . (22)

For definiteness suppose that x(0)=x(7)=0 and that M
has the topology of a sphere, as in Fig. 2, although noth-
ing essential depends on this. (s,®) are coordinates on
M, where 9 is the azimuthal angle, and the unit vectors

(7?,?, tﬁ’) are a right-handed orthonormal system at each
point of M. The membrane stress is best represented in
these coordinates, in order to take advantage of azimu-
thal symmetry. Detailed methods for doing this have
been given elsewhere [4]. It is enough to note that the
membrane stress can be represented as (complex) linear
combinations of symmetric stresses in the form

fu=fuh +f5+if jle™? (23)

where m is an integer labeling the azimuthal symmetry
class and f,, f;, and f, are real functions of s only. The

z f

FIG. 2. Azimuthally symmetric membrane M generated by a
curve C in the x-z plane by rotation about the z axis. The arc-
length s on C and the azimuthal angle 9 are coordinates on M.
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corresponding membrane velocity takes the same form
V=(V,i+Vs+iV,em?, (24)

where V,,, ¥, and V, are real functions of s.

The functionals 4 and B, according to Egs. (7) and (8),
are obtained as limits of integrals over M, i.e., integrals
over s and 1, but the ¢ dependence of f and V is always
the same, e™ for some m. Thus the 1 integrals can be
done once and for all.

The 1 integrals that occur are linear combinations of
the integrals

Lo (5,50,€)= fohf"e"'"“”dzb , (25)
where
A?=R2+4 47 sinza‘zli , (26)

R2=[z(s)—zy,—e€sinfy]*+[x(s)—x,+ecoshy]*, (27
A?=x(s)(x,—€cosby) . (28)

Here (x,0,z) and (x,,0,z,) are points on C, with
xo=x(sy), etc., defining s;. These expressions are less
mysterious when one notes that A=|F—7,| with
7o =(x0,0,zy)+€fly, and 7 is on the circle generated by
(x,0,z) and parametrized by . By a contour integral
technique one expresses these integrals in terms of the
Gauss hypergeometric function F (see Ref. [5]):

_m+pr 2Ltm +p /2T (1—p /2)

I
om APT(m +1)
XF(p/2,m+p/2;m+1w?), (29)
where
1/2
R? R R?
w=1+ —_— (30)
24%* 4 442

is the root of A%w?—(2A4%+R?*w + A2, which is smaller
than 1. As €—0,1,,(s,so,€) develops a singularity at
s=s,, corresponding to ¥=7,, or, in Eq. (29), w=1,
Asymptotic expansions of the hypergeometric function
near w =1 are available [5], which make it possible to iso-
late this singularity so that the singular parts of the in-
tegrals over s can be done analytically, leaving nonsingu-
lar integrals to do numerically. This, in outline, is the
method for evaluating the singular integral operators.
Details are given in Appendix A.

It is worth emphasizing here that numerical computa-
tions of this kind can be done with complete confidence.
The singular nature of the integrals is very unforgiving,
from the numerical point of view, and this makes any
mistake obvious. An integrand that is supposed to be
nonsingular, because two singularities have been made to
cancel by subtraction, will not look nonsingular if there is
a mistake. The limiting value of a nonsingular integrand
at s =5, will be out of place if any detail is wrong. Final-
ly, if M is a sphere, 4 and B can be computed analytical-
ly. From the numerical point of view the sphere is not
special, so it is a very strong check that the algorithm

sketched above correctly computes A and B in this case.
Since A and B can be evaluated on a suitable (truncat-

ed) basis of vector fields on M, they should be regarded as

matrices. This reduces Eq. (19) to linear algebra.

IV. WALL BOUNDARY CONDITIONS

Most real experimental situations include not only
membrane boundaries but also nearby fixed walls. The
effect of these walls can be included by modifying the ten-
sors ¢y and p; in Oseens’ representation, Eq. (4). For
this purpose it is useful to recognize

2 cost; sinf; .
3, P — f’ Cir - (31)

t3(0,F)=

Here r and §; are spherical polar coordinates and the an-
gle §; is measured from the jth Cartesian coordinate axis.
(The flow is azimuthally symmetric, so the third coordi-
nate does not occur in this expression.) These are singu-
lar Stokes flows originating from a point source orientat-
ed along each coordinate axis in turn. To solve wall
boundary value problems, it is enough to add nonsingular
Stokes flows T, which exactly cancel ¢, on the walls,
and to add the corresponding nonsingular pressures to
the p,. Then no-slip boundary conditions are built into
the Oseen representation. For a single infinite plane wall
those flows are well known [1]. They have a “reflected”
point singularity on the unphysical side of the wall.

If an azimuthally symmetric membrane’s symmetry
axis coincides with the normal of the nearby wall (say the
wall is z =0), then the hydrodynamics problems still has
azimuthal symmetry and can still be solved by the
method of Sec. III. The effect of the wall is to add regu-
lar integrals involving T to the singular integrals in-
volving ¢, . Again, the azimuthal integrals can be done
once and for all. The situation is as pictured in Fig. 3,
looking down along the symmetry axis at the x-y plane.
The contribution at 7, of the reflection in the wall of a
point source at 7 involves the projected distance p(¢) and
the angle a(1). Here the following convention is used:

FIG. 3. Integral operators A and B involve integration over
the azimuthal angle 1. The contribution at 7, of a source at 7
may include a flow “reflected” from a rigid wall (here con-
sidered to be in a plane parallel to the plane of the figure). This
flow is best represented in cylindrical coordinates centered on
the point 7.
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(32)
(33)

cos(a)=(py—p; cosy)/p ,
sin(a)= —(p;siny) /p ,

i.e., the @ shown in the figure is negative. Introduce the
Cartesian vectors

£=(0,0,1) , (34)
e(a)=/(cos(a),sin(),0) . (35)
Then T}, is given by
T=H,:®z+H 29¢(y—a)t+F,e(a)®?
+Fe(a)®e(yp—a)
+Gélatn/2)e(p—a—m/2) (36)

and operates on Cartesian vector fields by the usual
Cartesian inner product with the second factor in the ten-
sor product. The functions F, G, and H, with subscripts
indicating their azimuthal symmetry class, are nonsingu-
lar Stokes flows in cylindrical coordinates, which just
cancel the singular Stokes flows on the wall z=0. For
example, the flow that cancels ¢;;, (due to a source at 7
pointing in the direction of %) is Hyz+Fyp. The
significance of the other functions can be deduced simi-
larly. These functions are given in Appendix B, along
with the corresponding pressures. The normal derivative
of Tjk on the membrane, which is needed for the func-
tional B, can be found using

d . 3 d
an sin[ 6(s)] 3 cos[O(s)] 3, (37)
The explicit formulas for these derivatives, which are
rather lengthy, were generated in MATLAB-useable form
using MATHEMATICA. MATHEMATICA was also used to
check that the nonsingular flows really do satisfy the
Stokes equations. The numerical cancellation on the wall
after integration is a good check of this part of the com-
putation.

V. SHAPE DYNAMICS OF VESICLES

The equilibrium shapes of vesicles and their equilibri-
um statistical mechanics have received much attention in
recent years (see, for example, the review by Peliti [6]).
By contrast the dynamics of vesicles is discussed very lit-
tle, although, as the above theory demonstrates, the ob-
servable motions of membranes are very directly related
to their elastic properties. In this section the small am-
plitude dynamics of vesicles will be sketched. An exam-
ple of this dynamics is the erythrocyte flicker
phenomenon, the Brownian shape fluctuations of the hu-
man red blood cell. Quantitative investigations of
erythrocyte flicker typically involve an azimuthally sym-
metric erythrocyte resting, and perhaps adhering, on a
rigid horizontal substrate. This is exactly the situation
worked out above. As emphasized, one can treat each az-
imuthal symmetry class separately. Of course the re-
marks below apply to the shape dynamics of any vesicle.

Expand the membrane elastic energy to second order
about its minimum in a basis of allowed deformations and

diagonalize the resulting quadratic form. This gives
“normal modes” U; and a positive definite diagonal ener-
gy matrix Dy containing generalized Hooke’s law con-
stants. Here the indices j,k,... label the modes, which
serve as a (truncated) basis for the space of deformations.
These modes and the corresponding eigenvalues are ac-
cessible experimentally through equilibrium statistical
mechanics. Evaluate the matrices A ko Biks which
represent the linear functional A4 and B in this basis.
Represent an arbitrary membrane deformation in this
basis:

U=Uc;(1) . (38)
Then the membrane stress is

Su=—DU=—U;Dyc; (39)
and the membrane velocity is

V=U=U;1) . (40)
Equation (19) says

4m(no+m;)¢;=— Ay Dy, +(mo—m;)Byéy . (41)

Let C;(s) be the Laplace transform of c;(z). Then Eq.
(41) becomes an inhomogeneous linear equation for C;(s)
in the form

(M +5Ny )C = —Nyc, (0) (42)
where

M=A4D , (43)

N=4m(ny+n,)I—(n,—n,;)B . (44)

The solution of this problem is a linear combination of
eigenvectors of N ~!M, each relaxing at a rate that is the
corresponding eigenvalue. Thus the hydrodynamic
modes are readily found.

A membrane may have an appreciable two-dimensional
shear viscosity 7,,. Its effect on the hydrodynamic
modes can be computed easily. The matrix S of the elas-
tic shear energy will have been found in the first part of
the computation, since it is typically part of the elastic
energy. An intrinsic membrane viscosity means there is
an additional membrane stress

Su=—"2my,SV . 45)
The result is to change N by
N-—>N+2n,, AS . (46)

This exactly accounts for membrane shear viscosity.
Viscosities associated with bending or dilation, if they
were important, could be brought in just as easily because
the corresponding matrices would already have been
computed as elastic energy terms.

The matrix N ~'M, which determines the hydrodynam-
ic modes, is not self-adjoint in the natural inner product
on modes (integrate the Cartesian dot product of vector
fields over the membrane). Thus, unlike the normal
modes of equilibrium statistical mechanics, the hydro-
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dynamic modes are not in general orthogonal. These
modes and their time dependences are observable and
contain more information than equilibrium quantities.
The theory outlined in this paper is an accurately com-
putable description of them. Experimental results in this
direction may help elucidate the sometimes puzzling
mechanical properties of membranes.

ACKNOWLEDGMENT

I wish to thank Erich Sackmann for suggesting this
problem and for hospitality while this work was done.

APPENDIX A: COMPUTING SINGULAR INTEGRALS

The method for doing singular integrals in the case
where the membrane is azimuthally symmetric is illus-
trated by an example. According to Egs. (8) and (5), the
integrals that define B include integrals over

A
dt __n-(r—ro) ni(x, —xop ) Hmg(x;—x0;)
> —» — — 13
dn F—7o [F—7,

%'(?'—'?0 Nx; —Xoj )(xk —Xok )

773 (A1)
The integral is over the membrane M, where 7 is the vari-
able of integration, # is the unit normal at ¥, ¥y is at
P’-Feﬁo, where P is a point in M, and the limit as e —0 is
to be found. There are many terms and many com-
ponents. Consider only the last term in Eq. (A1), without
the factor —3, and consider the particular component
obtained by dotting with 7 and ;‘1\’0 (since such coordi-
nates, rather than Cartesian coordinates, are best adapted

to representing membrane motions). One is led to the in-
tegral

I(s,so,e):fow fOZ‘IT[ﬁ'(?__

XV, (s)e™dyp x(s)ds ,

S \125 o =
7o)y (Fr—7y)

}7_?0|5

(A2)

where one is working in the space of motions with azimu-
thal symmetry labeled by m. Since M is generated by a
curve (x(s),0,z(s)), making an angle O6(s) with the z
direction, as described in Sec. III, the dot products are

A-(F—Fy)=als,e)—2B(s,e)sinXy/2) , (A3)

Ho-(F—Fo)=71(s,€)—28(s,€)sin*(1h/2) , (A4)
where
a=(z—z,—e€sinf)sinf— (x —x,+ecosfy)cosf , (A5)
B=(xy—€cosby)cosh , (A6)
v =(z—24)sinfy— (x —x4)cosfy—e€ , (A7)
8= —x cosf, . (A8)
Then

I(s,s0,€)= [ "[a®yIs, —2(2aBy +a28)I2)
0 m Y Sm

+4(2aB8+B2y )1
—8B%I) 1V, (s)x(s)ds , (A9)
where
(n_ [2rsin’(¢p/2)e™?
In= fo % dy , (A10)

extending somewhat the definition of Eq. (25) and using
the definition of A in Eq. (26). (Note that I,,=I))
However,

Ilifzn)z_(lp,m—l—zlpm +Ip,m+1)/4 > (A11)
IN=U,, _,—4l,, +6I,,
=4l 1T, 40) /16, (A12)

etc., so that, in fact, only the integrals in Eq. (25) are
needed and only with p =5.

Using the result in Eq. (29) and the quantities R, 4
defined in Eqgs. (27) and (28), one deduces the asymptotic
expression for small R [5]

I, ~ 44 _(mR2)2 (le“
34R 44 124
+%15m+ o (A13)
where
Jsm=m—3)m—L)m+L)(m+3
X[In(1—=w?) —(1)—P(5)
+Y(3)+P(m +3)] /4 (A14)

and ¢ is the digamma function. Omitted terms are ir-
relevant for a discussion of the singularity at R =0
(equivalently w =1). [In the square brackets of Eq.
(A13), multiplying each positive power of R, there are
other terms of lower degree in m that have also been
omitted, for reasons that will become clear.]
In the integral
Io=f0”15ma2yVn(s)x(s)ds (A15)

the leading singularity in I5, is R ~* or, equivalently,
[(s —sy)?+€*] 2 This suggests writing

T 4 1
I = I —_—— e —
0 fO Sm 3A4 [(S_S0)2+62]2

XatyV,(s)x(s)ds+J, , (A16)
where
2
7 4 ayV,(s)x(s)
To= 755 [ —sPtdF® - (A17)

The first integral in Eq. (A16), I,—J,, is actually non-
singular because, with the leading singularity subtracted
off, the dangerous factor is only R ~2, which is € 2 at
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s =s,, while the factor @’y in the numerator is —e>. The
limit as €—0 can be taken by simply setting e=0 where
s#s, and defining the integrand to be zero at s=s,
(where it would otherwise be undefined). This integrand
is actually continuous. Next write

- | 4Py V,(s)x(s) g4
= — R+ 3
Jo fo 34 + € V,(sq)
1
X ——————ds+K, , (A18)
[(s—so)L}-ez]2 s 0
where
T4 1
K,=— —63V,,(s )—————————ds . (A19)
0 03 O (s —s50 2+ ET

The first integral in Eq. (A18), J,—K|, is actually non-
singular. The integrand at s =s, is zero for any nonzero
€ and hence also in the limit as €-—0. The integrand is
continuous in this limit. Hence J,—K, can be evaluated
numerically. Finally, K, is an elementary integral and
one easily computes

limK, = —sgn(e)zT” V.(so) . (A20)
€E—>

Thus

limI,= —sgn(e)zT’T V,(s9)+ Iy —Jo)+(Jg—K,)

e—0
(A21)

where the last two integrals are to be done numerically
with €=0 and the appropriate limiting value of the in-
tegrand supplied at s=s;. One sees in Eq. (A21) the
form of Eq. (8) emerging.

The next piece of the integral Eq. (A2) involves

I,= fo”zg%,),(zaﬁy +a?8)V,(s)x(s)ds . (A22)
Using Eq. (A11) and the asymptotic series Eq. (A13), one
finds that the leading singularity in 7$) is R 2 for small
R. The linear combination in Eq. (A11) essentially takes
two derivatives with respect to m, at least on polynomi-
als. Thus terms of degree O and 1 in m are eliminated, in-
cluding the R ~* term in Eq. (A13) and lower degree
terms multiplying R ~2, which were omitted there just for
this reason. Thus one is led to write

1 1

L=["1%—-
g fO o 643 | (s —s0)+€
X (2apy +a*8)V,(s)x(s)ds+J, , (A23)
where
| 1 1
J _
2 fo 64° | (s—s0)2+€
X (2aBy +a?8)V,(s)x(s)ds . (A24)

The first integral in Eq. (A23), I, —J,, has only a In(R)
singularity at R =0, since the leading singularity has been

subtracted off. This would be an integrable singularity in
any case, but in fact both a and y vanish like (s —s,)? at
s if €=0, so I,—J, can be done numerically, setting
€=0 if s¥#s, and setting the integrand zero at s =s,. The
integral J, can be done similarly. Set €=0 in the in-
tegrand and make the integrand continuous at s =s, by
defining it to be zero there. Then
llmIZZ(Iz_J2)+J2 ’

e—0

(A25)

where it is understood that on the right-hand side € is set
zero and the integrands are defined to be zero at s=s,,.
Both terms represent nonsingular integrals, which can be
done numerically.

The next contribution to Eq. (A2) involves

14:foﬂl(s‘t,)z(ZaBS-i—qu/)V,,(s)x(s)ds . (A26)

Using Eq. (A12) and the asymptotic series Eq. (A13), one
finds that the leading singularity in I$}) is logarithmic.
Since a and y vanish at R =0, this integral has a continu-
ous integrand at s =s, if one defines it to be zero there
(setting €=0) and so can be done numerically. Finally,
I§) has a continuous integrand if one defines it to be zero
at s =5, so it presents no numerical problems.

This almost completes the prescription for computing
the integral in Eq. (A2). All the integrals in the function-
als A and B follow this pattern, and it is just a question of
repeating the same ideas. The example is atypical only in
that the limiting values of integrands were always O at
s =s,. It remains to point out that if x,=0, the azimu-
thal integrals are trivial and should be done directly, not
as limiting cases of the above algorithm.

APPENDIX B: REFLECTED FLOWS AT A WALL

Let z=0 be a rigid boundary and introduce cylindrical
coordinates (p,a,z). Complex Stokes flows with definite
azimuthal symmetry can be represented as

—

V., =[F,(p,z)p+iG,, (p,z)a+H, (p,z)2]e™ . (Bl

Of course, the real part or imaginary part separately is
also a Stokes flow.

Consider the flow 7 of Eq. (31), originating at the
point (0,0,4 ), i.e., the singularity of the flow is a height &
above the wall. If j =3, corresponding to a source point-
ed in the 7 direction, then the nonsingular flow that just
cancels it on the wall is the m =0 flow

Fo=(h*p+hp*—5h%pz—p’2—Thpz?—pz3)/D°>, (B2)
G,=0, (B3)
Hy=(—2h*=3n%*—p*—12n%2 —4hp*z
—20h%22—3p%2—12hz3—22%) /D% , (B4)
where
D*=p*+(h+z)*. (B5)

The pressure in this flow (for unit viscosity) is
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R

Py= D7(—10h5—8h3p2+2hp4—42h4z

—20h2p’z —2p*z —68h322—16hp*z?
—52h%z3—4p*z3—18hz*—227) . (B6)

If j =1 or 2, the nonsingular Stokes flow, which cancels
tj; on the wall, is the m =1 flow, oriented appropriately,

Fi=—(h*+3n%*+2p*+6h3z+2hp%

+10h2%2%+3p%*2%+6hz3+2z*) /D" , (B7)
G, =—(h*+2h%p*+p*+6h3z+6hp’z
+10h 222 +2p*2 4+ 6hz3+z*) /D7, (B8)

H,=(h’p+hp*+Thpz —p’z+5hpz>—pz?)/D5 . (BY)

The corresponding pressure (which also has m =1 sym-
metry) is

P, =(10h*p+8h%p>—20°+28h3%pz +4hp’z
1 [4 P —2p P P

+24h%pz2—4p322+4hpz3—2pz*) /D7 . (B10)

These functions are used in representing flows that vanish
on z =0, as described in Sec. IV. There the role of z is
taken by z, and the role of 4 by z.
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